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Short Bio:
• Research Manager at imec-DistriNet, KU Leuven
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• Hardware & Software Co-Design for Security
• Embedded Systems Security
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• Safety-Critical Systems, Automotive Computing
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Automated Detection and Prevention of Vulnerabilities

Frank Piessens: “New trends in system software security”

JT on Tuesday: Developing and testing SW
1 Software security for the bad guys

Lazy ways of finding and exploiting software vulnerabilities
2 How to build “perfect software”

Probably there is no such thing; but let’s rule out as many vulnerabilities as
possible and affordable

JT on Thursday: Trusted Computing
3 How to protect perfect software at runtime

. . . because not having vulnerabilities in your code may not be enough
4 Building security into distributed systems

Raoul Strackx: “Foreshadow – from oversight to a tech nightmare”

3 /54 Jan Tobias Mühlberg Developing and testing secure software



empty

Review of Tuesday: Exploiting a Buffer Overflow

/* stack1.c; https://github.com/gerasdf/InsecureProgramming */

#include <stdio.h>

int main() {
int cookie;
char buf[80];

printf("buf: %08x cookie: %08x\n", &buf, &cookie);
gets(buf);

if (cookie == 0x41424344) {
printf("you win!\n");

}
}

Task: Compile and exploit to get “you win!”. Manually!
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Security in Smart Environments

Infrastructure needs to be developed with safety, security and privacy in
mind! What is critical infrastructure? What is critical code? Where is personal
data being processed? What’s the impact of failure?
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Security in Smart Environments

Understanding can be really difficult: What stake holders are involved? What
are their objectives and abilities? What hardware and software is involved?
Software quality? Data flows? Security requirements and guarantees?
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Security in Smart Environments

7 /54 Jan Tobias Mühlberg Developing and testing secure software

Source: https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
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Security in Smart Environments

“The risks are about to get worse, because computers are
being embedded into physical devices and will affect

lives, not just our data.”

— Bruce Schneier, [Sch18]
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Security in Smart Environments
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Source: https://www.wired.co.uk/article/teledildonics-hacking-sex-toys (2017)

https://www.wired.co.uk/article/teledildonics-hacking-sex-toys


empty

Security in Smart Environments
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Source: https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix (2018)
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Security in Smart Environments
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Source: https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
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Security in Smart Environments
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Source: https://www.europol.europa.eu/publications-documents/cybercrime-dependencies-map
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Security in Smart Environments
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Source: https://www.xkcd.com/1938/
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Security
1 Understand the system.

• Context, hardware, software, data, users,
use cases, etc.

2 Understand the security requirements.
• Requirements are not features!
• “Only authenticated users can do X.”

3 Understand the attacker.
• “Attackers can listen to all communication,

can drop, reorder or replay messages, may
compromise Y% of the system, can’t break crypto.”

4 Understand and embrace change!
• Discovery of vulnerabilities
• Different understanding of the system
• New (functional|security) requirements
• New attacks, different attackers
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Security in the Software Development Life-Cycle

Understand the system • Understand the security requirements • Understand
the attacker • Understand and embrace change!

Threat Modelling: Ask the right questions at the right moment, learn about
attacks and defenses, and argue why and when something is trustworthy.
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What can we trust?

Software?

Hardware?

Supply Chains?

People?

. . .
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What can we trust?

• Reasoning about security is about setting boundaries
• Which parts are considered trusted, and which parts are not?
• How far do we want to go in defending your application?
• What kind of security is economically viable?

• Building secure systems requires rigorous security arguments
• Having a good idea about what you are building.
• Determining which attackers are considered to be in scope.
• Analysing potential vulnerabilities, and introducing appropriate

countermeasures.

• A security argument is a rigorous argument that under a given
adversary model, a countermeasure effectively counters a threat,
or a security mechanism achieves a security goal.
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What can we trust?
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Source: https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america...

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
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Gathering Platform Requirements – A Thought Experiment

Sensors come from different vendors. Why would you trust them?
The cloud is “other people’s computers”. Why trust them?
Terminals may be used and managed by health care professionals. . .
There are huge software and hardware stacks with multiple vendors everywhere.
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Image source: https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0
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Gathering Platform Requirements – A Thought Experiment

Reasoning about security is about setting boundaries!

How would you design this system?
• Get a cyber insurance!
• Thread modelling, risk assessment, etc.
• Anonymisation of data, if possible
• Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
• Encryption
• Isolation, Security Rings
• Minimise Trusted Computing Base:

remove hypervisors, OSs, libraries from TCB
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Gathering Platform Requirements – A Real System
“We don’t want the Signal service to have visibility
into the social graph of Signal users. Signal is
always aspiring to be as ‘zero knowledge’ as
possible, and having a durable record of every
user’s friends and contacts on our servers would
obviously not be privacy-preserving.”

1 Run a contact discovery service in a secure SGX enclave.
2 Clients that wish to perform contact discovery negotiate a secure connection

over the network all the way through the remote OS to the enclave.
3 Clients perform remote attestation to ensure that the code which is running in

the enclave is the same as the expected published open source code.
4 Clients transmit [...] their address book to the enclave.
5 The enclave looks up a client’s contacts in the set of all registered users and

encrypts the results back to the client.
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Source: https://signal.org/blog/private-contact-discovery/
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Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation
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Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Layered architecture↔ hardware-only TCB
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Comparing Hardware-Based Trusted Computing Architectures
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Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities
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Trusted Computing
According to Richard Stallman
Treacherous Computing: “The technical idea underlying treacherous computing is
that the computer includes a digital encryption and signature device, and the keys
are kept secret from you. Proprietary programs will use this device to control
which other programs you can run, which documents or data you can access, and
what programs you can pass them to. These programs will continually download
new authorisation rules through the Internet, and impose those rules automatically
on your work.”

In the light of recent incidents. . .
• Buggy software: think of OpenSSL’s Heartbleed in an enclave
• Side channels: timing, caching, speculative execution, etc.
• Buggy system: CPUs, peripherals, firmware (Broadpwn, Intel ME, Meltdown)
• Malicious intent: Backdoors, ransomware, etc.
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Source: https://www.gnu.org/philosophy/can-you-trust.html
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Trusted Computing (and why Sancus?)
Good design practice for trusted computing?
Good use cases for trusted computing?

• non-invasive, understandable,
measurably secure

• stuff that matters: critical applications,
critical infrastructure, embedded

Don’t restrict the user but enable them,
convince them to trust.
Build to validate, invite to scrutinise:
hardware and software.
Build upon well-understood OSS building
blocks: hardware, crypto, compilers, OS, libs
Divide and conquer: memory curtaining
and isolation make validation easier
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Source: https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09
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Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation
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Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives

• Software Component
Isolation

• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/
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Attestation and Communication with Sancus
Ability to use KN,SP,SM proves the integrity and isolation
of SM deployed by SP on N

• Only N and SP can compute KN,SP,SM
N knows KN and SP knows KSP

• KN,SP,SM on N is computed after enabling isolation
No isolation, no key; no integrity, wrong key

• Only SM on N is allowed to use KN,SP,SM
Through special instructions

Remote attestation and secure communication by
Authenticated Encryption with Associated Data

• Confidentiality, integrity and authenticity
• Encrypt and decrypt instructions use KN,SP,SM of the calling SM
• Associated Data can be used for nonces to get freshness
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Comparing Hardware-Based Trusted Computing Architectures
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Secure Automotive Computing with Sancus [VBMP17]
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Modern cars can be hacked!
• Network of more than 50 ECUs
• Multiple communication networks
• Remote entry points
• Limited built-in security mechanisms Miller & Valasek, “Remote exploitation of an unaltered passenger vehicle”, 2015

Sancus brings strong security for
embedded control systems:

• Message authentication
• Trusted Computing: software component

isolation and cryptography
• Strong software security
• Applicable in automotive, ICS, IoT, . . .
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Secure Automotive Computing with Sancus [VBMP17]

VulCAN: Generic design to exploit light-weight TC in CAN-based control
networks; https://distrinet.cs.kuleuven.be/software/vulcan/
Implementation: based on Sancus [NVBM+17]; we implement, strengthen and
evaluate authentication protocols, vatiCAN [NR16] and LeiA [RG16]

33 /54 Jan Tobias Mühlberg Developing and testing secure software

https://distrinet.cs.kuleuven.be/software/vulcan/


empty

Attacking the CAN

Complex bus system with many ECUs and gateways to other communication
systems; no protection against message injection or replay attacks.
→ Message Authentication; specified in AUTOSAR, proposals: vatiCAN, LeiA;
no efficient and cost-effective implementations yet
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Attacking CAN Message Authentication

What about Software Security?
Lack of security mechanisms on light-weight ECUs leverages software
vulnerabilities: attackers may be able to bypass encryption and authentication.
→ Software Component Authentication & Isolation
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Vulcanising Distributed Automotive Applications

• Critical application components in enclaves: software isolation + attestation

• Authenticated CAN messages over untrusted system software/network
• Rogue ECUs, software attackers and errors in untrusted code cannot interfere

with security, but may harm availability
• Infrastructure support: isolation, attestation, fast crypto – Sancus
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Authentic Execution of Distributed Event-Driven Applications

“Authentic Execution of Distributed Event-Driven Applications with a Small TCB”,
Noorman et al., STM 2017. [NMP17]
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Trusted Execution for Everyone

Fortanix solves cloud security and privacy using runtime encryption technology
build upon Intel SGX. https://fortanix.com/

SCONE enables secure execution of containers and programs using Intel SGX.
https://sconecontainers.github.io/

Graphene-SGX: A practical library OS for unmodified applications on SGX.
https://github.com/oscarlab/graphene

Open Enclave is an SDK for building enclave applications in C and C++.
https://github.com/Microsoft/openenclave

Our Tutorial: Building distributed enclave applications with Sancus and SGX
https://github.com/sancus-pma/tutorial-dsn18

https://fortanix.com/
https://sconecontainers.github.io/
https://github.com/oscarlab/graphene
https://github.com/Microsoft/openenclave
https://github.com/sancus-pma/tutorial-dsn18
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Tutorial Overview – Learning Outcomes
Programming Enclaves

• Remote attestation
• ECALLs and OCALLs
• Untrusted pointers
• Secure random numbers
• Local attestation
• Secure I/O

Tricky bits
• Sanitising untrusted pointers
• Information leakage and side channels
• Freshness and non-repudiation: nonces and session keys
• Attesting SGX enclaves – what is the root of trust?

Concepts
• Authentic Execution: end-to-end security for distributed applications on

heterogeneous Protected Module Architecture
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When not to trust your TEE. . .

Trusted Execution does not help you against bugs in your own (trusted)
code.

Trusted Execution does not help you if you don’t know what to protect.

(Trusted) Execution can be observed through indirect channels and may
leak secrets through these channels.
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Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation
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Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Layered architecture↔ hardware-only TCB
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Motivation: Application Attack Surface

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Untrusted OS→ new class of powerful side-channels
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Side-Channel Attack Principle

Source: https://commons.wikimedia.org/wiki/File:WinonaSavingsBankVault.JPG43 /54 Jan Tobias Mühlberg Developing and testing secure software
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Side-Channel Attack Principle

Source: https://flic.kr/p/69sHDa
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Fetch-Decode-Execute CPU Operation

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency
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Fetch-Decode-Execute CPU Operation
Note: IRQ only served after current instruction has completed

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency
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Wait a Cycle . . .
⇒ IRQ latency leaks instruction execution time (!)

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency
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Interrupt Latency as a Side-Channel
CLK

2 execute cycles hardware latency ∆TSC

INS JZ INST1 IRQ logic ISR

IRQ

TSC x x+1 x+2 x+2+1 ... x+y+2 x+y+3

3 execute cycles hardware latency

INS JZ INST2 IRQ logic ISR

IRQ

TSC x x+1 x+2 x+3 x+3+1 ... x+y+3 x+y+4
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Intel SGX Helicopter View

https://software.intel.com/en-us/sgx/details

• Protected enclave in application’s virtual
address space

• x86 CPU: ∃ pipeline, cache, out-of-order
execution, . . .

• Secure interrupt hardware mechanism:
AEX/ERESUME
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Interrupting and Resuming Enclaves

Goal: single-step through SGX enclave: interrupt each instruction sequentially
and record corresponding IRQ latency trace
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Interrupting and Resuming Enclaves

U
S
E
R

K
E
R
N
E
L

 
 
(...)
syscall
mov $3, %rax
lea aep_trampoline, %rcx
ERESUME

while true do
    INST
    INST
    INST
    ...
    INST
endwh

 
 
apic_timer_interrupt:
  pushq %rax..%rdx  
  rdtscp
  (...)
  iret
 
syscall_entry:
  (...)
  wrmsr TSC_DEADLINE
  popq %rdx..%rax  
  iret

LKM

entry_64.S

aep_trampoline.S

enclave

ERESUME9

AEX2
callback

iret

syscall

iret

retrieve
ERESUME_
DELTA

7

3

5

6

8

4
IRQ1
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Macrobenchmark: Modular Exponentiation

function SQUARE_AND_MULTIPLY(c,d,e,n)
r ← rand()
c ← c ∗ re mod n
m← 1
for most to least significant bit b in d do

m← m2 mod n
if b then

m← m ∗ c mod n
end if

end for
return m ∗ r−1 mod n

end function
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Extracted IRQ Latency Trace
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• “X-ray” extracted from a single dummy RSA decryption

• Distinct instructions for stack canary + blinding: RDRAND
• Sharply defined algorithm phases
• Full 16-bit key recovery
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Extracted IRQ Latency Trace
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Zero threshold

Flush page table entry for global variable accessed every loop iteration
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Side Channels: Be Aware!

Nemesis [VBPS18] is the first remote side-channel for embedded + high-end
trusted computing hardware

IRQ latency trace reveals micro-architectural behavior:

• Lots of noise/non-determinism on modern CPUs
• Abuse subtle timing differences with machine learning?

Defense techniques:

• Eliminate secret-dependent control flow↔ practice
• Sancus secure hardware patch to mask IRQ latency
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Summary
[Tuesday: Fuzzing, Testing & Formal Verification]

1 There are automated techniques to find
vulnerabilities and to generate exploits

2 . . . or to build really secure software
3 Correct code still needs protection against

layer-below attacks!

Trusted Execution Technology
1 Strong application isolation and attestation
2 No protection against buggy software!
3 Potential for invasive use

Sancus
1 The Open-Source Trusted Computing Architecture
2 Built upon openMSP430 16-bit MCU, applications

in IoT and embedded control systems
3 Research prototype under active development!
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Thank you!

“The risks are about to get worse, because computers are
being embedded into physical devices and will affect

lives, not just our data.”

— Bruce Schneier, [Sch18]

Thank you! Questions?

https://distrinet.cs.kuleuven.be/
https://github.com/sancus-pma/tutorial-dsn18

52 /54 Jan Tobias Mühlberg Developing and testing secure software

https://distrinet.cs.kuleuven.be/
https://github.com/sancus-pma/tutorial-dsn18


empty

References I
P. Maene, J. Gotzfried, R. de Clercq, T. Muller, F. Freiling, and I. Verbauwhede.
Hardware-based trusted computing architectures for isolation and attestation.
IEEE Transactions on Computers, PP(99):1–1, 2017.

C. Miller and C. Valasek.
Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015.

J. Noorman, J. T. Mühlberg, and F. Piessens.
Authentic execution of distributed event-driven applications with a small TCB.
In STM ’17, vol. 10547 of LNCS, pp. 55–71, Heidelberg, 2017. Springer.

S. Nürnberger and C. Rossow.
– vatiCAN – Vetted, Authenticated CAN Bus, pp. 106–124.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling.
Sancus 2.0: A low-cost security architecture for IoT devices.
ACM Transactions on Privacy and Security (TOPS), 20:7:1–7:33, 2017.

A.-I. Radu and F. D. Garcia.
LeiA: A Lightweight Authentication Protocol for CAN, pp. 283–300.
Springer International Publishing, Cham, 2016.

B. Schneier.
Internet hacking is about to get much worse.
The New York Times, 10 2018.

53 /54 Jan Tobias Mühlberg Developing and testing secure software



empty

References II

J. Van Bulck, J. T. Mühlberg, and F. Piessens.
VulCAN: Efficient component authentication and software isolation for automotive control networks.
In ACSAC ’17, pp. 225–237. ACM, 2017.

J. Van Bulck, F. Piessens, and R. Strackx.
Nemesis: Studying microarchitectural timing leaks in rudimentary cpu interrupt logic.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 178–195. ACM, 2018.

54 /54 Jan Tobias Mühlberg Developing and testing secure software


